Publications

Articles (Aalborg University)

  1. Trabjerg MS, Mørkholt AS, Lichota J, Oklinski MKE, Wiborg O, Andersen DC, Jønsson K, Kroese LJ, Pritchard CEJ, Huijbers IJ, Gazerani P, Corthals A, Nieland, JDV. Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Scientific Reports. 2020 September 24;10(1).
  2. Mørkholt AS, Oklinski MK, Larsen A, Bockermann R, Issazadeh-Navikas S, Nieland JGK, Kwon TH, Corthals A, Nielsen S, Nieland JD. Pharmacological inhibition of carnitine palmitoyl transferase 1 inhibits and reverses experimental autoimmune encephalitis in rodents. PLOS ONE. 2020 June 10;15(6).
  3. Mørkholt AS, Trabjerg MS, Oklinski MK, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Nieland JDV. CPT1a plays a key role in the development and treatment of multiple sclerosis and experimental autoimmune encephalomyelitis. Sci Rep. 2019 September 16;9(1).
  4. Mørkholt AS*, Kastaniegaard K*, Trabjerg MS, Gopalasingam G, Niganze WN, Larsen A, Stensballe A, Nielsen S, Nieland JD. Identification of brain antigens recognized by autoantibodies in experimental autoimmune encephalomyelitis-induced animals treated with etomoxir or interferon-β. Sci Rep. 2018 May 4;8(1).
  5. Mørkholt AS, Wiborg O, Nieland JGK, Nielsen S, Nieland JD. Blocking of carnitine palmitoyl transferase 1 potently reduces stress-induced depression in rat highlighting a pivotal role of lipid metabolism. Sci Rep. 2017 May 19;7(1).

Posters (Aalborg University)

  1. Trabjerg, D. Andersen, P. Huntjens, K. Mørk, M. Skjønnemand, M. Oklinski, A. Mørkholt, I. Huijbers, C. Pritchard, L. Kroese, J. Nieland. The role of lipid metabolism in mouse models of Parkinson’s disease. International Parkinson and Movement Disorder Society, September 22-29, 2019, Nice, France.
  2. Mørkholt AS, Trabjerg MS, Huijbers IJ, Pritchard CEJ, Kroese LJ, Nieland JD. Identifying the role of lipid metabolism in an experimental autoimmune encephalomyelitis mice model. Consortium of Multiple Sclerosis Centers (CMSC), May 30-June 02 2018, Nashville, Tennessee, USA.
  3. Trabjerg MS, Mørkholt AS, Nielsen S, Nieland JD. Identifying the role of lipid metabolism in central nervous systems diseases; is there a common theme for MS, ALS, Parkinson´s disease and depression? Consortium of Multiple Sclerosis Centers (CMSC), May 30-June 02 2018, Nashville, Tennessee, USA.
  4. Mørkholt AS, Kastaniegaard K, Trabjerg MS, Niganze W, Gopalasingam G, Larsen A, Stensballe A, Nielsen S, Nieland JD. Comparison of etomoxir, a lipid metabolism blocker, and interferon-b treatment on antibody recognition of brain proteins in multiple sclerosis. Consortium of Multiple Sclerosis Centers (CMSC), 24-27 May 2017, New Orleans, Louisiana, USA.
  5. Mørkholt AS*, Kastaniegaard K*, Stensballe A, Nielsen S, Nieland JD. Characterization of humane autoantibody response to brain proteins in multiple sclerosis patients. Consortium of Multiple Sclerosis Centers (CMSC), 24-27 May 2017, New Orleans, Louisiana, USA.
  6. Mørkholt AS, Larsen A, Wiborg O, Issazadeh S, Nieland JGK, Nielsen S, Nieland JD. Highly effective treatment of multiple sclerosis by blocking the lipid metabolism. 32nd Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), 14-17 September 2016, London, UK.
  7. Mørkholt AS, Larsen A, Nieland JGK, Issazadeh S, Nielsen S, Nieland JD. Blocking the lipid metabolism as a new treatment strategy for multiple sclerosis. Consortium of Multiple Sclerosis Centers (CMSC), 01-04 June 2016, National Harbor, Maryland, USA.

 

References

 

General

  1. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. Apr 2019;24(8)doi:10.3390/molecules24081583
  2. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. Oct 2005;58(4):495-505. doi:10.1002/ana.20624
  3. Zhu, S. et al. The progress of gut microbiome research related to brain disorders. J. Neuroinflam. 17, 1–20 (2020).
  4. Tracey, T. J., Steyn, F. J., Wolvetang, E. J. & Ngo, S. T. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 1–25 (2018)
  5. Parker, A., Fonseca, S. & Carding, S. R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 11, 135–157 (2020).

 

HD

  1. Leoni V, Mariotti C, Nanetti L, et al. Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci Lett. May 2011;494(3):245-9. doi:10.1016/j.neulet.2011.03.025
  2. Gardiner SL, Milanese C, Boogaard MW, et al. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurol Genet. Oct 2018;4(5):e275. doi:10.1212/NXG.0000000000000275
  3. Aziz NA, Pijl H, Frölich M, et al. Systemic energy homeostasis in Huntington’s disease patients. J Neurol Neurosurg Psychiatry. Nov 2010;81(11):1233-7. doi:10.1136/jnnp.2009.191833
  4. Valenza M, Cattaneo E. Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci. Sep 2011;34(9):474-86. doi:10.1016/j.tins.2011.06.005
  5. Ayala-Peña S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic Biol Med. Sep 2013;62:102-110. doi:10.1016/j.freeradbiomed.2013.04.017
  6. Goodman AO, Murgatroyd PR, Medina-Gomez G, et al. The metabolic profile of early Huntington’s disease–a combined human and transgenic mouse study. Exp Neurol. Apr 2008;210(2):691-8. doi:10.1016/j.expneurol.2007.12.026
  7. Hubers AA, van der Mast RC, Pereira AM, et al. Hypothalamic-pituitary-adrenal axis functioning in Huntington’s disease and its association with depressive symptoms and suicidality. J Neuroendocrinol. Mar 2015;27(3):234-44. doi:10.1111/jne.12255
  8. Kong G, Cao KL, Judd LM, Li S, Renoir T, Hannan AJ. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 02 2020;135:104268. doi:10.1016/j.nbd.2018.09.001

 

ALS

  1. Dodge, J. C. et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. 110, 10812–10817 (2013).
  2. Pradat, P. F. et al. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 11, 166–171 (2010).
  3. Palamiuc, L. et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med. 7, 526–546 (2015)
  4. Bozzo, F., Mirra, A. & Carr??, M. T. Oxidative stress and mitochondrial damage in the pathogenesis 571 of ALS: New perspectives. Neurosci. 636, 3–8 (2017).

 

MS

  1. Ford C, Nieland JD. Digging deeper into MS pathology: Is lipid metabolism at the root? The Science of MS Management. The Consortium of Multiple Sclerosis Centers, CMSC; 2017.
  2. Multople Sclerosis is not a disease of the immune system. Q Rev Biol. 2011;86(4):287-321. doi: 10.1086/662453.
  3. Shriver, L. P. & Manchester, M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. 1, 79 (2011).

 

PD
 

  1. Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 216–231 (2016).
  2. Dunn, L. et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol. Aging 35, 1111–1115 (2014).
  3. Sampson, T. R. et al. A gut bacterial amyloid promotes a-synuclein aggregation and motor impairment in mice. Elife 9, 1–19 (2020).